Information Relaxations, Duality, and Convex Stochastic Dynamic Programs

نویسندگان

  • David B. Brown
  • James E. Smith
چکیده

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these nonanticipativity constraints. In this paper, we study DPs that have a convex structure and consider gradient penalties that are based on first-order linear approximations of approximate value functions. When used with perfect information relaxations, these penalties lead to subproblems that are deterministic convex optimization problems. We show that these gradient penalties can, in theory, provide tight bounds for convex DPs and can be used to improve on bounds provided by other relaxations, such as Lagrangian relaxation bounds. Finally, we apply these results in two example applications: first, a network revenue management problem that describes an airline trying to manage seat capacity on its flights; and second, an inventory management problem with lead times and lost sales. These are challenging problems of significant practical interest. In both examples, we compute performance bounds using information relaxations with gradient penalties and find that some relatively easy-to-compute heuristic policies are nearly optimal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Relaxations and Duality in Stochastic Dynamic Programs

We describe a general technique for determining upper bounds on maximal values (or lower bounds on minimal costs) in stochastic dynamic programs. In this approach, we relax the nonanticipativity constraints that require decisions to depend only on the information available at the time a decision is made and impose a “penalty” that punishes violations of nonanticipativity. In applications, the h...

متن کامل

Dynamic Portfolio Execution and Information Relaxations

We consider a portfolio execution problem where a possibly risk-averse agent needs to trade a fixed number of shares in multiple stocks over a short time horizon. Our price dynamics can capture linear but stochastic temporary and permanent price impacts as well as stochastic volatility. In general it is not possible to solve even numerically for the optimal policy in this model, however, and so...

متن کامل

Lagrangian Primal Dual Algorithms in Online Scheduling

We present a primal-dual approach to design algorithms in online scheduling. Our approach makes use of the Lagrangian weak duality and convexity to derive dual programs for problems which could be formulated as convex assignment problems. The constraints of the duals explicitly indicate the online decisions and naturally lead to competitive algorithms. We illustrate the advantages and the flexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Operations Research

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014